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Numerical models indicate that collective animal behavior may
emerge from simple local rules of interaction among the individ-
uals. However, very little is known about the nature of such
interaction, so that models and theories mostly rely on aprioristic
assumptions. By reconstructing the three-dimensional positions of
individual birds in airborne flocks of a few thousand members, we
show that the interaction does not depend on the metric distance,
as most current models and theories assume, but rather on the
topological distance. In fact, we discovered that each bird interacts
on average with a fixed number of neighbors (six to seven), rather
than with all neighbors within a fixed metric distance. We argue
that a topological interaction is indispensable to maintain a flock’s
cohesion against the large density changes caused by external
perturbations, typically predation. We support this hypothesis by
numerical simulations, showing that a topological interaction
grants significantly higher cohesion of the aggregation compared
with a standard metric one.

animal groups � behavioral rules � flocking � self-organization

Collective behavior of large aggregations of animals is a truly
fascinating natural phenomenon (1). Particularly interesting

is the case when aggregations self-organize into complex pat-
terns with no need of an external stimulus (2). Prominent
examples of such behavior are bird flocks (3), fish schools (4) and
mammal herds (5). Apart from its obvious relevance in ethology
and evolutionary biology, collective behavior is a key concept in
many other fields of science, including control theory (6),
economics (7), and social sciences (8).

How does collective behavior emerge? Numerical models of
self-organized motion, inspired both by biology (9–15) and
physics (16–20), support the idea that simple rules of interaction
among the individuals are sufficient to produce collective be-
havior. Unfortunately, we have very scarce empirical informa-
tion about the precise nature of such rules. The main theoretical
assumptions (attraction among the individuals, short range
repulsion, and alignment of the velocities) are reasonable, but
generic, and there are as many different models as different ways
to implement these assumptions. Without decisive experimental
feedback it is difficult to select what is the ‘‘right’’ model and,
therefore, to understand what are the underlying fundamental
rules of animal collective behavior.

The main goal of the interaction among individuals is to
maintain cohesion of the group. This cohesion is a very strong
biological requirement, shaped by the evolutionary pressure for
survival: Stragglers and small groups are significantly more
prone to predation than animals belonging to large and highly
cohesive aggregations (4). Consider a flock of starlings under
attack by a peregrine falcon: The flock contracts, expands, and
even splits, continuously changing its density and structure. Yet,

no bird remains isolated, and soon the flock reforms as whole.
The question we want to answer is ‘‘what kind of interaction
maintains cohesion in such a robust way?’’

To grant cohesion, models make the sound assumption that
individuals align and attract each other, and that such interaction
decays with increasing distance between individuals. The vast
majority of models adopt a definition of ‘‘distance’’ that is the
same as in physics, i.e., metric distance. In a metric context, two
birds 5 m apart attract each other less than two birds 1 m apart.
Animals can estimate metric distance in various ways, including
stereovision, retinal image size, and optic flow (21). Thus, a
metric interaction seems natural. However, an interaction based
on metric distance may be unable to reproduce the density
changes typical of animal aggregations, because one would
expect cohesion to be lost when mutual distances become too
large compared with the interaction range. An alternative is
topological distance: The relevant quantity is how many inter-
mediate individuals separate two birds, not how far apart they
are. In this case, each individual interacts with a fixed number of
neighbors, irrespective of their metric distance. The crucial
difference between metric and topological interaction really
comes in when the density varies: In the topological case, two
birds 5 m apart in a sparse flock attract each other as much as
two birds 1 m apart in a denser flock, provided that the number
of individuals between the two birds is the same. Thus, in the
topological hypothesis, the strength of the interaction remains
the same at different densities. This interaction seems more
suitable to keep cohesion in the face of strong density fluctua-
tions. By means of empirical observations, we will show that the
topological paradigm is, in fact, more suitable.

Results
Structure is the foremost effect of interaction, and, conversely,
interaction is ciphered in the interindividual spatial structure.
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Hence, to learn something about the interaction ruling collective
behavior, it is necessary to analyze the structural organization of
individuals within the group. To do this, however, it is essential
to have data on the 3D positions of individuals in large groups.
Collective behavior is a qualitatively different phenomenon, with
emerging complex patterns, only when the number of individuals
is big. Moreover, in small aggregations, the surface-to-volume
ratio is large, and the bias introduced by the border is inevitably
very strong (see Methods). Unfortunately, gathering quantitative
3D data on even moderately large groups of animals is very
difficult. Most empirical studies have two major limitations: A
small number of individuals (a few tens) and loose group
arrangements (22–25), at variance with the huge, highly cohesive
natural aggregations.

Using stereometric and computer vision techniques, we mea-
sured 3D individual birds positions in compact flocks of up to
2,600 European Starlings (Sturnus vulgaris) in the field. This
number is an advance of almost two orders of magnitude
compared with former experiments. A typical f lock and its 3D
reconstruction are shown in Fig. 1 [see also supporting infor-
mation (SI) Fig. 5]. Although not all birds form groups, starlings
habitually organize in flocks, and their aerial display provides a
paradigmatic case of collective behavior. These birds gather in
the evening over the roost and form sharp bordered, strongly
cohesive flocks, ranging from a few hundreds to tens of thou-

sands of birds (see SI Figs. 6 and 7). We reconstructed and
analyzed 10 independent flocking events recorded at the roost-
ing site of Termini railway station (Rome, Italy) between
December 2005 and February 2006. Each event is defined by a
series of up to 80 stereo photographs, shot at 10 frames per
second. Different events correspond to different flocking flight
sequences. Observations were made at dusk.

The clearest characterization of the structure of birds within
a flock is given by the spatial distribution of the nearest
neighbors. Given a reference bird, we measure the angular
orientation of its nearest neighbor with respect to the flock’s
direction of motion, i.e., the neighbor’s bearing and elevation.
We repeat this by taking all individuals within a flock as
reference bird, and, in this way, we map the average angular
position of nearest neighbors (see Fig. 2’s legend). This map (Fig.
2a) shows a striking lack of nearest neighbors along the direction
of motion. The structure of individuals is therefore strongly
anisotropic. The possible reasons for this anisotropy, probably
related to the visual apparatus of birds (starlings have lateral
visual axis), are discussed in the SI Text. The crucial point,
however, is that this anisotropy is the effect of the interaction

Fig. 1. A typical analyzed flock. This group consists of 1,246 starlings, flying
at �70 m from the cameras at �11 ms�1 (flock 28-10 in SI Table 1). (a and b)
Left (a) and right (b) photographs of the stereo pair, taken at the same instant
of time, but 25 m apart. To perform the 3D reconstruction, each bird’s image
on the left photo must be matched to its corresponding image on the right
photo. Five matched pairs of birds are visualized by the red squares. (c–f )
Three-dimensional reconstruction of the flock under four different points of
view. (d) Reconstructed flock under the same perspective as in b.

Fig. 2. Angular density of nearest neighbors. For each bird i we define the
unit vector u� i in the direction of its nearest neighbor. We then place all of the
vectors u� i at the same origin and plot their density on the unitary sphere
(Mollweide projection). We normalize by the isotropic case so that the density
is uniformly equal to 1 for a noninteracting aggregation of individuals. The
velocity V� goes through the center of the map, whereas the component of
gravity perpendicular to the velocity, G� �, corresponds with a minus sign to the
zenith of the map (velocity V� and gravity G� are approximately orthogonal in
all flocks; on average, V� �G� � 0.13 � 0.02 SE). The plane P orthogonal to G� �

corresponds to the horizon. The latitude, or elevation, � �[�90°:90°] indicates
the angle between ui and the horizon plane P. The longitude, or bearing, �

�[�180°:180°] indicates the angle between the projection of u� i on the horizon
plane P and the velocity V� . Therefore, the center of the map (� � 0°, � � 0°)
corresponds to the front of the bird, whereas the points (� � 0°, � � �180°)
and (� � 0°, � � �180°) correspond to the rear of the bird. (a) For nearest
neighbors, the density is strongly anisotropic, with a significant lack of birds
along the velocity. The map is calculated by using data from flock 25-11 (see
SI Table 1). However, data from all flocks show the same lack of nearest
neighbors along the velocity (SI Fig. 10). (b) The density for the tenth nearest
neighbor shows no statistically significant structure, and it is compatible with
a set of noninteracting points.
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among individuals, whatever this interaction is. To support this
claim, we compute the distribution of neighbors very far apart
from the reference bird (Fig. 2b). This distribution is uniform, as
for a completely isotropic, noninteracting aggregation of points.
This observation is a direct empirical indication that interaction
decays with the distance, and it demonstrates that we can use the
anisotropy to get information about the interaction (see also the
SI Text on this point). In fact, if we compute the angular map for
the second nearest neighbor, third nearest neighbor, and so on,
we observe that the anisotropic structure progressively fades
away as the order of the neighbor increases.

To quantify the decay of the anisotropy, we define a function
�(n) that measures to what extent the spatial distribution of the
nth nearest neighbor around a reference bird is anisotropic (see
Fig. 3’s legend). The value of � for an isotropic, noninteracting
aggregation is 1/3 (see the SI Text). A value larger than 1/3
indicates that the interaction among the birds makes the struc-
ture anisotropic. In Fig. 3a, we show that �(n) decays gradually
to 1/3 when n increases. Hence, for each flock, we can define an
interaction range nc, given by the value of n where � becomes 1/3.
By definition, birds farther than the ncth nearest neighbor are
isotropically distributed around the reference bird and do not
interact with it. Fig. 3a is an empirical determination of how the
interaction decays in a real instance of collective behavior in the

field. Previous work (26) was limited to 2D projections of very
small groups (�10) in the laboratory.

The nth nearest neighbor of a given bird is characterized not
only by its integer label n but also by its actual distance in meters
r from the reference bird. For example, in flock 32-06 (Fig. 3b)
the sixth nearest neighbor of a bird is found, on average, at 1.25 m
from it. Clearly, the relation between n and r depends on the
specific density of the flock. Whereas n measures the topological
distance from a reference bird, r measures the metric distance.
In addition to the topological interaction range in unit of birds,
nc, we can therefore introduce a metric range, in unit of meters,
rc. Going back to flock 32-06, we have nc � 6, and rc � 1.25 m
(Fig. 3a).

The flocks we analyzed differ greatly from one another in
density (the density not depending on the number of birds or on
the velocity of the flock). This difference implies that the
topological and metric ranges, nc and rc, cannot both be constant
from flock to flock. To elucidate this crucial point, let us
consider two flocks with different densities. If the interaction
depends on the metric distance, then the range in meters rc is the
same in the two flocks, although the number of individuals nc
within this range is large in the denser flock, and small in the
sparser flock. Conversely, if the interaction depends on the
topological distance, the range in units of birds nc is constant in
the two flocks, although the distance rc of the ncth nearest
neighbor is small in the denser flock, and large in the sparser
flock. The difference between topological and metric hypotheses
is stark: In the topological scenario, the number of interacting
individuals is fixed, whereas in the metric scenario, the number
varies with density. For example, within the same metric range
there are 10 birds in our densest f lock and only 1 bird in the
sparsest one. Topological and metric ranges therefore are not
interchangeable characterizations of the interaction. To under-
stand whether it is the metric or the topological distance that
matters, we must measure how rc and nc depend on the flocks’
density.

To cast, in a quantitative way, the two opposite scenarios, we
note that the average distance r of the nth nearest neighbor grows
with n according to the relation r � r1 n1/3 (see Fig. 3b). In this
equation, r1 is the average nearest-neighbors distance, which is
a direct measure of sparseness (the inverse of density); r1 varies
from 0.68 m in the densest f lock to 1.51 m in the sparsest f lock
(see SI Table 1). The equation above simply means that the
number n of individuals within a sphere of radius r is propor-
tional to r3. The two ranges are linked by the same relation, rc �
r1 nc

1/3. In a metric scenario, rc is a constant, and thus nc
�1/3� r1.

Conversely, in the topological scenario nc is a constant, and thus
rc � r1. We have measured nc and rc in each flock and have
studied how these two quantities depend on the flocks’ sparse-
ness r1. The experimental evidence clearly supports the topo-
logical scenario: There is no significant correlation between
nc

�1/3 and r1, whereas a clear linear correlation exists between rc
and r1 (Fig. 3c, 3d). The topological range is therefore approx-
imately constant from flock to flock. On average, we find nc �
6.5 � 0.9 SE.

We therefore showed that the structure, and thus indirectly the
interaction causing it, depends on the topological distance rather
than the metric distance. The interaction between two birds 1 m
apart in flock A is as strong as that between two birds 5 m apart
in flock B, provided that flock A is denser than flock B and that
the topological distance n is the same. Our empirical result
contrasts with the assumption of most models and theories. Even
though some models introduce a cut-off, or numerical prefer-
ence, in the number of interacting neighbors (so that this number
is fixed), they still ‘‘weight’’ these neighbors metrically (18, 27).
We must stress that this is not what we find here. It is the very
shape of the interaction that depends on the topological dis-
tance, not simply the cut-off, or the range (Fig. 3a). Our result

Fig. 3. Assessing the range of the interaction. Let u� i
(n) be the unit vector

pointing in the direction of the nth nearest neighbor of bird i. We define the
matrix, M��

(n) � 1/N � ui,�
(n) ui,�

(n), where the sum extends over all N birds in the flock,
and �,� � x,y,z. The unitary eigenvector W� (n) relative to the smallest eigen-
value of M(n) coincides with the direction of minimal density of the vectors u� i

(n),
i.e., the direction of minimal crowding of the nth nearest neighbor. To
measure the degree of anisotropy in the spatial distribution of the nth nearest
neighbor, we use the function �(n) � (W� (n)�V� )2, where V� is the velocity. The
value of � for an isotropic, noninteracting distribution of points is 1/3. (a) The
function �(n) is plotted for two different flocks (32-06 and 25-11); error bars
represent the standard error. For both flocks, the structure becomes approx-
imately isotropic between the sixth and the seventh nearest neighbor. The
topological range nc is defined as the point on the abscissa where a linear fit
of �(n) in the decreasing interval intersects the value 1/3. (b) The average
distance rn of the nth neighbor is plotted against n1/3 (error bars are smaller
than symbols size). The slope of these curves is proportional to the sparseness
r1 of the flock. (c) Topological range nc (to the power �1/3) vs. the sparseness
r1 of each flock. No significant correlation is present (Pearson’s correlation
test: n � 10, R2 � 0.00021, P � 0.97). (d) Metric range (in meters) rc vs.
sparseness r1. A clear linear correlation is present in this case (n � 10, R2 � 0.78,
P � 0.00072).

1234 � www.pnas.org�cgi�doi�10.1073�pnas.0711437105 Ballerini et al.

http://www.pnas.org/cgi/content/full/0711437105/DC1
http://www.pnas.org/cgi/content/full/0711437105/DC1
http://www.pnas.org/cgi/content/full/0711437105/DC1


also rules out for starling flocks the hypothesis that the aniso-
tropic structure is a consequence of the bird’s effort to take
advantage of the wakes of its neighbors (28), because such
aerodynamic advantage would decay within a well defined metric
length scale (see SI Text). In fact, we believe that the only
mechanism compatible with our result is vision.

Discussion
Why six to seven neighbors? This range is significantly smaller
than the number of visually unobstructed neighbors around each
bird. We conclude that this specific value of nc must derive from
the cortical elaboration of the visual input rather than from a
limitation of the input itself. To keep a fixed number of neighbors
under control, it is necessary for the individuals to have some
prenumeric ability, or, more precisely, an object-tracking, or
‘‘subitizing,’’ ability (29). This capability decays beyond a certain
number, and such perceptual limit defines the range of interac-
tion. Laboratory experiments show that trained pigeons can
discriminate sets of different numerosities provided that these
sets have less than seven objects (30). In our field study, we find
a range of six to seven neighbors. Such a striking agreement
suggests that the same tracking ability at the basis of numerical
discrimination may be used for interacting with a fixed number
of neighbors and therefore would be an essential ingredient of
collective animal behavior. The existence of a perceptual limit in
numerosity is also found in 2D experiments on shoaling fish, and
it is estimated at approximately three to five individuals (31). An
alternative interpretation of the interaction range we find is that
the specific value of nc may be functional to optimize antipreda-
tory response: If each individual interacts with too few neigh-
bors, information is nonnoisy, but it is too short-ranged; con-
versely, if the interaction involves too many neighbors,
information is averaged over several ill-informed individuals,
and it is too noisy (32). A recent model for collective behavior
(14) locates the optimal range for antipredatory response in 2D
between three and five individuals, to be compared with our 3D
value of six to seven.

Why a topological, and not a metric, interaction? Animal
collective behavior is staged in a troubled natural environment.
Hence, the interaction mechanism shaped by evolution must
keep cohesion in the face of strong perturbations, of which
predation is the most relevant. We believe that topological
interaction is the only mechanism granting such robust cohesion
and, therefore, higher biological fitness. A metric interaction is
inadequate to cope with this problem: Whenever the interindi-
vidual distance became larger than the metric range, interaction
would vanish, cohesion would be lost, and stragglers would
‘‘evaporate’’ from the aggregation. A topological interaction, in
contrast, is very robust, because its strength is the same at
different densities. By interacting within a fixed number of
individuals the aggregation can be either dense or sparse, change
shape, f luctuate and even split, yet maintain the same degree of
cohesion.

To support this hypothesis, we analyze topological vs. metric
interaction in the context of one of the simplest 2D flocking
models, the self-propelled particles (SPP) model of ref. 16 (see
caption of Fig. 4 for the equations defining the model). The
original SPP model is strictly metric: Each individual interacts
with all neighbors within a fixed metric range rc. The model,
however, can easily be modified to become topological: Each
individual interacts with a fixed number of neighbors, nc. In
absence of external perturbation, both interactions produce
cohesive flocks in an appropriate range of parameters. However,
it is not simply cohesion we are after, but robust cohesion. We
therefore expose a cohesive flock to an external perturbation
that mimics the attack of a predator. A possible outcome of the
attack is to break the original f lock into many components (Fig.
4a). Most of these M components consist of isolated individuals,

or small groups, which are, of course, very vulnerable to preda-
tion. A robust interaction must preserve cohesion under attack
and thus keep the number of components M as low as possible.
M � 1 indicates that the original f lock resisted the attack as a
whole, and it corresponds to maximum cohesion. Therefore, the
higher the cohesion of the aggregations, the lower the number
of components M after the attack. We performed the numerical
experiment a large number of times, with different initial
conditions, and computed the probability of having M f locks
after the attack.

Metric f locks very often break into more than one component,
with a maximum probability at M � 5 (Fig. 4 b and d). This
finding means that the average resilience of a metric f lock is
extremely poor: Many isolated birds and small groups are forced
out of the main flock by the predator’s attack. Cohesion in
topological f locks, on the other hand, is far superior (Fig. 4 c and

Fig. 4. Numerical simulations in 2D: Metric vs. topological interaction under
predator’s attack. Each bird i is characterized by its position r�i and velocity v� i,
which has constant modulus and heading �i. The dynamics is defined by: r�i(t �
1) � r�i(t) � v� i(t � 1) and �i(t � 1) � [�i(t) � �j �j(t)]/(Ni � 1) (see also ref. 6). The
sum runs over the Ni neighbors interacting with bird i. In the metric version of
the model, one considers all neighbors within a fixed metric range rc around
bird i, whereas in the topological case, the first nc neighbors are considered:
Ni � nc for all i. The flock and the predator are in relative motion one against
the other, with a vertical offset d. The predator exerts a repulsive force on each
bird, which decays with the bird–predator distance as 1/r and gives a contri-
bution F0 [ yi cos(�i) � xi sin(�i) ]/ri

2 to the equation for the heading �i. (a) Sketch
of the experiment: An initially cohesive and polarized flock moves toward the
predator (orange arrow) and interacts with it. (b and c) Typical flocks’ trajec-
tories. In the metric case, many birds are pushed out of the flock, whereas in
the topological case, no stragglers arise. (d and e) Probability that the flock
breaks into M connected components (CC) after the attack; a CC is defined as
a set of birds that are within a distance 3rc from at least one other bird. In the
metric, case stragglers are the 43% of the CC, whereas in the topological case,
they are just the 5%. In a second simulation, flocks are sent against an obstacle.
To avoid it, the velocity of each bird is randomly reassigned whenever it gets
too close to the obstacle. The probability of M is very similar to the predator
setup; metric stragglers are 24% of the CC; topological stragglers are 0.7%.
Parameters of the simulation are as follow: n � 200 particles; T � 2,000 time
steps; number of different initial conditions Nin � 5,000 (metric case) or 2,000
(topological case); rc � 0.15 (metric case); nc � 3 (topological case); vi � 0.25
s�1; d � 0.9; F0 � 0.05. Initial birds are confined in a region of size R � 1 and
have aligned velocities. Boundaries are open. We checked that the results do
not change qualitatively in an ample and stable range of parameters.
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e). The highest probability is at M � 1, namely the most probable
outcome of the attack is that the original f lock does not break
up. Moreover, the probability decays very rapidly to zero. Flocks
ruled by a topological interaction are therefore much more
stable under perturbations than metric ones. We repeated the
same experiment by using an interindividual interaction that
decays as the inverse of the distance, either metric (1/r) or
topological (1/n). Results were exactly the same (SI Fig. 8). This
finding proves a very important point: The nature of the
interaction (metric vs. topological) is much more relevant than
the specific way it depends on the distance (flat vs. decaying). We
expect the difference between topological and metric interaction
to be even more striking in 3D, where achieving cohesion is more
difficult because of the larger number of individual degrees of
freedom. Simulations in 3D would also allow us to investigate the
possible link between the empirical interaction range nc � 6–7
and the antipredatory optimum.

We note that for starlings the visual sensing range is well
beyond the average distance of the seventh neighbor even in the
sparsest f lock we analyzed. Thus, we can exclude that the metric
sensing range is cutting off the topological interaction range.
However, in extremely sparse flocks (not analyzed in our study),
as well as in species (such as fishes) living in less transparent
medium, the metric sensing range may fall within the topological
range. These cases may in fact be modeled by a topological
interaction complemented with a metric cut-off, which describes
the sensing limit (see, for example, refs. 14 and 18).

In conclusion, we presented large-scale 3D empirical data on
a paradigmatic instance of collective animal behavior, namely
starlings’ aerial display over the roost. Our results show that the
interindividual interaction depends on the topological distance,
not the metric distance, at variance with most current models and
theories. We suggest that models should be reconsidered in the
light of this result. We also argued that a topological interaction
is necessary to sustain strong density fluctuations and to main-
tain cohesion under perturbation, most conspicuously, preda-
tion. Our numerical simulations support this idea in a compelling
way. Given the strong adaptive advantage of cohesion for all
animal aggregations, it seems likely that topological interaction
is also a fundamental ingredient of other instances of collective
animal behavior. Further empirical observations of different
systems are necessary to confirm this idea.

Materials and Methods
Location and Materials. Images were taken in Rome, from the terrace of
Palazzo Massimo, Museo Nazionale Romano, facing the roost trees situated in
the square in front of Termini railway station. The apparatus was located 30 m
above ground level. Wind speed never exceeded 12 ms�1. The birds’ average
distance was 100 m. We used Canon EOS 1D Mark II digital cameras (3,504 	
2,336 pixels), mounting Canon 35-mm calibrated lenses. Aperture was in the
interval: f2.0–4.0; shutter speed: 1/1,000–1/250 s; ISO: 100–800; cameras’
tilt-up: 35–40%.

Experimental Technique. We used stereo photography (33, 34). The distance
between stereo cameras (baseline) was d � 25 m. A third trifocal camera was
placed 2.5 m from the right stereo camera (SI Fig. 9). The error �z on the
relative distance of two nearby targets located at distance z from the cameras
is dominated by the error �s in the determination of the images’ positions. For
parallel focal planes we have, �z � �s z2/
d, where 
 � 4,335 is the focal length
in pixels of our cameras, and nominally �s � 1 pixel. For birds at z � 100 m, we
thus get a nominal error �z � 0.09 m. The error �z on the absolute distance of
a target at distance z is dominated by the error �� on the convergence angle
between the focal planes of the stereo cameras, �z � �� z2/d. Each stereo

camera was mounted on a 680-mm-long bar. A thin (0.25-mm diameter) line
run along the bars and connected the stereo pair (SI Fig. 9). The nominal
alignment error was thus �� � 0.25/680 � 3.7 	 10�4 rad, thus giving a nominal
error �z � 0.14 m (targets at 100 m). Regular tests, performed with laser-
metered targets, gave: �s � 0.4 pixelf error on relative distance �z � 0.04 m;
�� � 2.3 	 10�3 radiantsf error on absolute distance �z � 0.92 m (for z �
100 m). Stereo cameras had a 0.22-rad convergence (SI Fig. 9).

Temporization. The shutter release cables were connected to a timer that fired
the cameras simultaneously at 5 frames-per-second (fps). Synch error was
smaller than 10ms. To increase shooting rate two interlaced cameras were
mounted on each bar (SI Fig. 9). Thus, our apparatus was shooting at 10 fps.
Buffers of the cameras filled up after 40 photographs. Therefore each flocking
event lasts at most 8 seconds.

Stereo Matching. After subtraction of the background, a segmentation algo-
rithm locates birds’ positions on the photographs (35). To perform the 3D
reconstruction, each bird’s image on the left photo must be matched to its
corresponding image on the right photo (Fig. 1). For large and compact sets of
featureless points, this problem becomes extremely severe, and it has been the
main bottleneck in the 3D reconstruction of animal aggregations. Our match-
ing procedure involves three cameras, A–C (SI Fig. 9), and has four steps. First,
a newly developed algorithm, exploiting pattern recognition and epipolar
invariance (34), matches �20% of the birds on the stereo pair (A–C). Second,
the same algorithm matches �90% of the birds on the two nearby cameras (A
and B). Third, these matches are used to calculate the nonlinear trifocal tensor
(36). Fourth, by means of the trifocal tensor and an optimization assignment
algorithm (37), the (A and B) matches are transferred to the pair (A–C). In the
cases we analyzed, we match, on average, 88% of the birds and never �80%.
Tests with synthetic (computer generated) images gave �5% of mismatches.

Events Selection. We collected �500 independent flocking events, the vast
majority of which was discarded because they were (i) not included in the field
of view of all six cameras; (ii) too far for our photographic resolution (�250 m);
or (iii) recorded in too severe light conditions. These criteria do not affect
biological features, and the 50 events remaining were a fair sampling of the
roost’s flocks. We then selected 10 of these 50 events. We chose flocks with
sharp borders, strong spatial cohesion, and a large number of birds (�400). We
discarded too dense flocks, because our algorithms put a limit to the maximum
density. We checked on synthetic data that the reconstruction software does
not introduce any bias in the flock’s shape and structure. All of the recon-
structions belonging to a single event are statistically homogeneous and were
thus used to build statistics for that particular flock.

Border. It is essential to take care of the bias introduced by the aggregation’s
border. Flocks are not necessarily convex, and thus the standard convex hull is
not suitable to define their border. To do this, we used the �-shape algorithm
(38): A set of 3D points is excavated with spheres of radius �, so that all
concavities of size larger than � are detected. The border points must then be
excluded from the analysis, and, for this reason, having large aggregations is
essential. We used the Hanisch method (39): When computing a certain
average quantity at a given scale r, only the points having a distance from the
border �r are considered. We checked all our tools by using them in test-point
distributions, where the analytic results were known.
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